

Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр животноводства – ВИЖ имени академика Л.К. Эрнста» (ФГБНУ ФИЦ ВИЖ им. Л.К. Эрнста)

Федеральное государственное бюджетное образовательное учреждение высшего образования МСХА им. К.А. Тимирязева

ИЗУЧЕНИЕ ГЕНЕТИЧЕСКИХ МАРКЕРОВ ПРИЗНА<mark>КОВ</mark> ПРОДУКТИВНОСТИ КРУПНОГО РОГАТОГО СКОТА НА ПРИМЕРЕ АБЕРДИН-АНГУССКОЙ ПОРОДЫ

Докладчик: Коновалова Е.Н.*

Соисполнители: Романенкова О.С.*,

Селионова М.И.**, Евстафьева Л.В.**

Исследования выполнены в рамках гос. задания Министерства науки и высшего образования РФ

VI Емельяновские чтения

научно-практическая конференция с международным участием «Аграрная наука на современном этапе состояние, проблемы, перспективы»

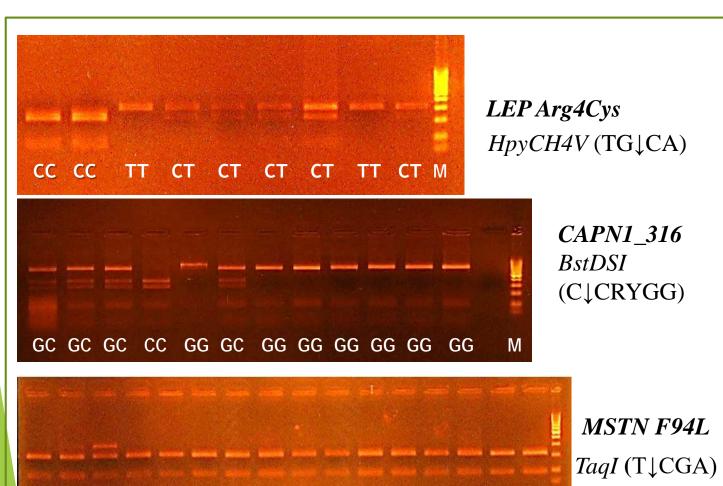
ОТБОР ВЫСОКОПРОДУКТИВНЫХ ЖИВОТНЫХ НА ОСНОВЕ ЗНАНИЙ О ГЕНОТИПЕ

 Усилия специалистов области животноводства направлены на получение наиболее высокопродуктивных животных.

Анализ ДНК позволяет раннее получение информации о генотипах животных в отношении генов продуктивности и здоровья независимо от пола, возраста и физиологического состояния животных.

ГЕНЫ МЯСНОЙ ПРОДУКТИВНОСТИ КРУПНОГО РОГАТОГО СКОТА

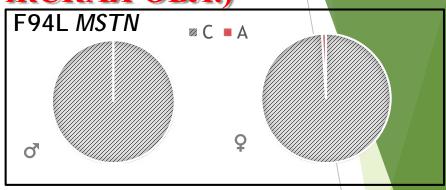
Признак	Ген	Мутация	Механизм		
Нежность	Кальпаин 1	Большое количество полиморфизмов было	Ген кодирует фермент кальпаин 1 или μ-		
мяса	(CPN1)	обнаружено в гене <i>CAPN1</i> КРС (Page et al., 2002),	кальпаин, участвующих в протеолизе		
		два из которых (аминокислотные замены A316G	мышечных белков в течение выдержки		
		и I530V внутри экзонов 9 и 14, соответственно)	мяса (Smith, Casas, Rexroad III, Kappes, &		
		были связаны с различиями в нежности мяса.	Keele, 2000).		
	Кальпастатин (<i>CSTN</i>) Два SNPs, локализованных на 3'UTR региона гена были связаны с различиями в нежности (б Nonneman, Kappes, & Koohmaraie, 1999)		Кодирует белок кальпастатин,		
			ингибирующий кальпаин.		
Содержание	Ген лептина (<i>LEP</i>)	У КРС в гене <i>LEP</i> было обнаружено несколько	Белок лептина действует как гормон,		
жира в туше		полиморфизмов, некоторые из которых были	который индуцирует сытость и, таким		
		связаны с уровнями жира в туше и потреблением	образом, регулирует прием корма и		
		корма (Buchanan et al., 2002; Lagonigro, Wiener,	энергетический баланс (Barb, Hausman,		
		Pilla, Woolliams, & Williams, 2003; Barendse,	& Hoseknechtm, 2001).		
		Bunch, & Harrison, 2005; Liefers et al., 2005).			
Мраморность	Ген	На хромосоме 14. Полиморфизмы гена TG были	Расщепляет тироидный гормон,		
мяса	тироглобулина	напрямую связаны с различием во	вовлеченный в регуляцию развит <mark>ия</mark>		
	(TG)	внутримышечном жире (Barendse, 2002b).	адипоцитов.		
	Ген	Полиморфизм гена <i>DGAT1</i> - Ala232Lys в белке,	Данный фермент вовлечен в послед <mark>ние</mark>		
	диацилглицерол-	связан с различиями в молочном жире и,	стадии синтеза жира.		
	0-	возможно, влияет на внутримышечный жир			
	ацилтрансферазы	(Thaller et al., 2003). Расположен на хромосоме 14			
	(DGAT1)	рядом с <i>TG</i> .			
Убойный	Ген миостатина	Полиморфизм повышает мускулистость и снижает	В результате мутации образуется		
выход	(MSTN) SNP F94L	наружный и межмышечный жир без изменения	незрелый белок миостатина, не		
		веса при рождении	способный останавливать мышечный		
			рост.		

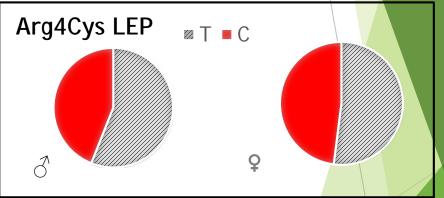


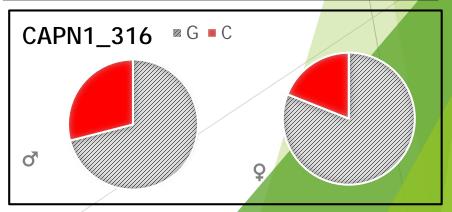
SNP -Single Nucleotide Polymorphism

ПОЛИМОРФИЗМЫ ГЕНОВ МИОСТАТИНА, ЛЕПТИНА И КАЛЬПАИНА 1, СВЯЗАННЫЕ С ПРОДУКТИВНОСТЬЮ КРУПНОГО РОГАТОГО СКОТА

Ген	Полиморфизм	Влияние на свойство продуктивности
Миостатин (MSTN)	F94L	Аллель A связан с повышенной мускулистостью
Лептин (LEP)	LEP UASM2 C>T (Agr4Cys)	Аллель С связан с более постным мясом
Кальпаин 1 (CAPN1)	CAPN1_316	Аллель С связан с более нежным мясом


РАЗРАБОТКА МЕТОДОВ ГЕНЕТИЧЕСКОГО ТЕСТИРОВАНИЯ





РЕЗУЛЬТАТЫ ГЕНОТИПИРОВАНИЯ МОЛОДНЯКА (n=142) АБЕРДИН-АНГУССКОЙ ПОРОДЫ ООО КФХ «ХЭППИ ФАРМ» (РОССИЯ, КАЛУЖСКАЯ ОБЛ.)

Полиморфизм	Генотипы	% генотипов среди групп животных	
		Бычки	Телки
F94L MSTN	CC	100,0	98,8
	CA	0,0	1,2
	AA*	0,0	0,0
Arg4Cys LEP	TT	34,4	28,4
	СТ	42,6	46,9
	CC*	23,0	24,7
CAPN1_316	GG	50,8	70,4
	GC	41,0	21,0
	CC*	8,2	8,6

^{*}желательный генотип

ВЫВОДЫ

- На основании полученных результатов можно заключить о наличии достаточного высокого генетического потенциала крупного рогатого скота абердин-ангусской породы изучаемой популяции в отношении свойств продуктивности, касающихся качества мяса.
- Генотипирование по изучаемым полиморфизмам может способствовать получению более постного и нежного мяса путем подбора животных с желательными генотипами по генам лептина и кальпаина 1.

ДАЛЬНЕЙШИЕ ПЕРСПЕКТИВЫ

- Дальнейшее изучение генных полиморфизмов, связанных с хозяйственно-полезными признаками крупного рогатого скота мясного направления продуктивности;
- > Разработка и совершенствование методов анализа;
- Корреляционные исследования между генотипами полиморфизмов продуктивности и фенотипическим проявлением хозяйственно-полезных признаков.

СПАСИБО ЗА ВНИМАНИЕ!

